4 research outputs found

    Serum levels of oxidative stress marker malondialdehyde in breast cancer patients in relation to pathohistological factors, estrogen receptors, menopausal status, and age

    Get PDF
    Introduction: The aim of this study was to determine the serum levels of malondialdehyde (MDA) in patients with invasive breast cancer in relation to its serum levels in patients with benign breast disease, and to investigate correlation between MDA serum levels with pathohistological prognostic factors (tumor size, lymph node involvement, and histologic grade [HG]), estrogen receptor (ER) status, and with breast cancer patientā€™s age and menopausal status. Methods: A total of 43 with well-documented invasive breast cancer were included in this study: 27 with positive axillaryā€™s lymph nodes, and 16 with negative axillaryā€™s lymph nodes, and 39 patients with findings of benign breast diseases. MDA determination in serum of breast cancer and benign breast disease patients was performed by the fluorimetric method, immunohistochemical staining was performed for ER, and routine pathohistological examination was conducted for pathohistological factors. Results: MDA serum levels in breast cancer patients were significantly higher than MDA serum levels in benign breast disease patients (p = 0.042). No statistically significant difference between MDA serum levels in breast cancer patients with and without lymph node metastases was found (p = 0.238). No statistically significant correlations between MDA serum levels and tumor size (p = 0.256), HG (p = 0.124), or number of positive lymph nodes (0.113) were found. A statistically significant correlation between serum MDA levels and ages of breast cancer patients with lymph node metastases was found (p = 0.006). Conclusion: Obtained results support the importance of MDA in the carcinogenesis of breast cancer. According to our findings, serum level of MDA could not be a useful prognostic factor in breast cancer

    Genetički polimorfizmi u dijabetesu: Utjecaj na terapiju oralnim antidijabeticima

    Get PDF
    Due to new genetic insights, etiologic classification of diabetes is under constant scrutiny. Hundreds, or even thousands, of genes are linked with type 2 diabetes. Three common variants (Lys23 of KCNJ11, Pro12 of PPARG, and the T allele at rs7903146 of TCF7L2) have been shown to be predisposed to type 2 diabetes mellitus across many large studies. Individually, each of these polymorphisms is only moderately predisposed to type 2 diabetes. On the other hand, monogenic forms of diabetes such as MODY and neonatal diabetes are characterized by unique clinical features and the possibility of applying a tailored treatment. Genetic polymorphisms in drug-metabolizing enzymes, transporters, receptors, and other drug targets have been linked to interindividual differences in the efficacy and toxicity of a number of medications. Mutations in genes important in drug absorption, distribution, metabolism and excretion (ADME) play a critical role in pharmacogenetics of diabetes. There are currently five major classes of oral pharmacological agents available to treat type 2 diabetes: sulfonylureas, meglitinides, metformin (a biguanide), thiazolidinediones, and Ī±-glucosidase inhibitors. Other classes are also mentioned in literature. In this work, different types of genetic mutations (mutations of the gene for glucokinase, HNF 1, HNF1Ɵ and Kir6.2 and SUR1 subunit of KATP channel, PPAR-Ī³, OCT1 and OCT2, cytochromes, direct drug-receptor (KCNJ11), as well as the factors that influence the development of the disease (TCF7L2) and variants of genes that lead to hepatosteatosis caused by thiazolidinediones) and their influence on the response to therapy with oral antidiabetics will be reviewed.Dijabetes tipa 2 dosegao je proporcije epidemije u SAD (> 18 milijuna) i cijelom svijetu (170 milijuna oboljelih osoba) te ima tendenciju daljnjeg dramatičnog rasta. Stoga se u posljednje vrijeme ulažu napori da se otkriju i razviju novi farmakoloÅ”ki agensi za liječenje ove bolesti. Klasifikacija Å”ećerne bolesti proÅ”irena je uspjesima istraživača na području genetike. Da bismo razumjeli farmakogenetiku antidijabetika neophodno je razumjeti genetiku samog dijabetesa. Kao Å”to će biti prikazano u ovom radu veliki broj gena koji su povezani s razvojem dijabetesa takođe utječu i na odgovor na terapiju antidijabeticima. S druge strane, mutacije gena koji utječu na ADME (apsorpcija, distribucija, metabolizam i ekskrecija) lijeka imaju značajan utjecaj na farmakogenetiku oralnih antidijabetika. Utvrđeno je da je dijabetes genetički heterogena bolest. Uobičajeni oblici dijabetesa su gotovo uvijek poligenski i za razvoj same bolesti vrlo su značajne snažne interakcije među različitim genima kao i između gena i okoliÅ”a. Zbog toga mutacije ili polimorfizmi koji u manjoj mjeri utječu na funkciju gena mogu postati klinički značajni samo u slučaju kada se kombiniraju s drugim faktorima odnosno genima. Smatra se da u razvoju dijabetesa mogu sudjelovati stotine pa čak i tisuće gena. Do 2006. identificirano je nekoliko uobičajenih alela koji povećavaju rizik za razvoj dijabetesa, od kojih su najznačajniji PPARG (Pro12), KCNJ11 (Lys23) i TCF7L2 (T na rs7903146). Do danas je najveći uspjeh postignut u identifikaciji gena odgovornih za razmjerno rijetke oblike ove bolesti poput ā€Maturity-onset diabetes of the youngā€ (MODY) i neonatalnog dijabetesa. Monogenske oblike dijabetesa odlikuju jedinstvene kliničke karakteristike i mogućnost primjene individualnog tretmana. Genetički polimorfizmi enzima koji utječu na metabolizam lijekova, transportera, receptora i drugih ciljeva djelovanja lijekova povezani su s interindividualnim razlikama u efikasnosti i toksičnosti mnogih lijekova. Vrlo je važno da se na temelju farmakogenetičkih istraživanja mogu predvidjeti neki neželjeni efekti lijekova. Trenutačno postoji pet glavnih klasa oralnih antidijabetika: sulfoniluree, meglitinidi, metformin (bigvanid), tiazolidindioni i inhibitori Ī±-glukozidaze. U literaturi se također spominju inhibitori dipeptidil peptidaze IV (DPP-IV), selektivni antagonisti kanabinoidnog receptora 1 (CB-1), glukagonu slični peptid 1 mimetici i amilin mimetici. Razumijevanje mehanizama koji rezultiraju disfunkcijom Ī² stanica na fizioloÅ”kom i molekularnom nivou neophodno je za napredak u razumijevanju tretmana dijabetesa. U ovom radu dat je pregled različitih genetičkih mutacija (mutacije gena za glukokinazu, HNF 1, HNF1Ɵ, Kir6.2 i SUR 1 podjedinicu KATP kanala Ɵ stanica, PPAR-Ī³, OCT1 i OCT2, citohrome, KCNJ11, faktore koji utječu na razvoj bolesti (TCF7L2) i varijante gena koji dovode do hepatosteatoze uzrokovane tiazolidindionima) te njihov utjecaj na odgovor na terapiju oralnim antidijabeticima

    The Effects of Combined SarCNU and Ganglioside Treatment of Growth of C6 Glioma Cell Cultues

    No full text
    In vitro antiproliferative effects of SarCNU and GMI ganglioside were tested in different concentration ratios in C6 glioma cell culture. Based on MTT assay and a protein assay, cytotoxicity of each agent separately and the two agents combined was tested. When the cells were treated with different concentrations of ganglioside ranging from 10-ā€™ to 10-2, the number of viable cells decreased highly on days two and seven, regardless of the concentration of the agent applied. SarCNU, as expected, has caused antiproliferative effects which highly correlated with the concentration of the agent tested. When the C6 glioma cell culture was treated with the two agents combined in the optimal concentration causing the above mentioned cytotoxicity, effects observed did not correlate with those observed for each agent alone, suggesting in this case the expression of highly neuroprotective effects of ganglioside GMI

    Creatine Kinase Activity in Patients with Diabetes Mellitus Type I and Type II

    No full text
    Diabetes mellitus can be looked upon as an array of diseases, all of which exhibit common symptoms. While pathogenesis of IDDM (insulin dependant diabetes mellitus) is well understood, the same is not true for diabetes mellitus type II. In the latter case, relative contribution of the two factors (insulin resistance or decreased insulin secretion) varies individually, being highly increased in peripheral tissues and strictly dependant on insulin for glucose uptake. Moreover, in patients with diabetes mellitus type II, disbalance at the level of regulation of glucose metabolism as well as lipid metabolism has been noted in skeletal muscles. It is normal to assume that in this type of diabetes, these changes are reflected at the level of total activity of enzyme creatine kinase. This experimental work was performed on a group of 80 regular patients of Sarajevo General Hospital. Forty of those patients were classified as patients with diabetes type I and forty as patients with diabetes type II. Each group of patients was carefully chosen and constituted of equal number of males and females. The same was applied for adequate controls. Concentration of glucose was determined for each patient with GOD method, while activity of creatine kinase was determined with CK-NAC activated kit. Statistical analysis of the results was performed with SPSS software for Windows. Obtained results point out highly expressed differences in enzyme activity between two populations examined. Changes in enzyme activity are more expressed in patients with diabetes type II. Positive correlation between concentration of glucose and serum activity of the enzyme is seen in both categories of diabetic patients which is not the case for the patients in control group. At the same time, correlation between age and type of diabetes does exist . This is not followed at the level of enzyme activity or concentration of glucose
    corecore